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Spurious Correlation

When training a deep model on a classification task, there is a chance that the model relies on

spurious correlation between parts of images and the label[2].

However, the test samples may not come from the train data distribution!

When such correlation is abscent in the test data, the models accuracy drops. The Goal is to

train a classifier that is robust to spurious correlation.

The Focal Regions of Models

Based on the easiness of inferring the label from the spurious parts, the models may attend

more either to the spurious parts or the parts that are the real causes of the label.
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Figure 1. Behaviour of a model trained with standard ERM in different datasets. Based on the easiness of inferring the label from the
causal or non-causal parts across the whole dataset, the model attends more to one of them, this behaviour is more evident on samples on
which the model has a low loss. (a), (b) Average xGradCAM score of Cifar10 (causal) and and MNIST (non-causal) pixels in four loss
quantiles of the Dominos train set. The model generally attends more to the non-causal parts, and as the loss decreases, the non-causal
attention increases. (c), (d) Average xGradCAM score of foreground (causal) and background (non-causal) pixels in four loss quantiles of
the Waterbirds train set. The model generally pays attention to the causal parts, and as the loss decreases, the causal attention increases.

less likely to contain spurious attributes, without access to
group labels during training. Most of these methods rely
on the assumption that datapoints on which the model has a
high loss are most probably from minority groups and want
to place more emphasis on these samples. However, in these
samples, the obscure core object may be the source of high
loss (i.e., the target object itself cannot be easily classified),
and overrating these samples may have some side effects.
To be more precise, we need to discover and analyze parts
of images to make a more accurate decision.

Due to the compositional nature of images, the prob-
lem of correlation shift can be viewed through the lens of
compositionality, as models fall into the trap of spurious
correlation because they make their predictions based on
non-causal components of images. This fine-grained per-
spective could lead to a more precise approach compared to
methods that consider images as a whole. While the view-
point of compositionality is essential to OOD generaliza-
tion, especially when facing correlation shift, only a limited
number of works have explored this problem from this per-
spective. As a recent work, [34] combines different images
and uses them for model distillation on the representation
level. Nonetheless, they cannot label the combined images,
as they could not determine whether the parts taken from
images for combining are causal or non-causal parts. Ad-
ditionally, they do not offer any evaluations on correlation
shift benchmarks. Masktune [3] takes a step further and hy-
pothesizes that in datasets exhibiting spurious correlation,

the parts of an image with high attribution scores are non-
causal and misleading, and based on this assumption, masks
these parts for finetuning a model.

Inspired by this compositional viewpoint, we propose
Decompose-and-Compose (DaC), a method for balancing
groups by intervening on non-causal components of images
and creating new ones. The same idea of intervening on im-
ages or using synthetic data as a means of group-balancing
has been previously studied in a few works [19, 33]. How-
ever, unlike our method, which does not require any exter-
nal aid during training, both these studies have a knowledge
of the possible spurious attributes, and based on this knowl-
edge, they create concept banks [33] or intervene in images
using generative models [19].

In this paper, we first analyze the behavior of a model
trained with ERM and utilize its attribution map on images
to decompose them into causal and non-causal parts; then,
based on the performance of the model trained with our
method on the validation set, we identify the causal parts
in images.

More precisely, as opposed to MaskTune [3], which as-
sumes that for a given model trained with standard ERM,
the regions with high attribution scores are spurious ones,
we show that most of the attention regions of a model
trained with ERM are usually either on causal or on non-
causal parts of images, based on the easiness of predicting
the label from the causal and non-causal parts respectively.
Gaining this knowledge about the causal parts enables us
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The amount of a model’s attention on the C (core) and S (spurious) parts varies significantly

among two different datasets exhibitting spurious correlation. This is more evident in samples

on which the model has a low loss.
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Adaptive Masking

Goal: decompose images into two important and unimportant parts.
We mask only the low-loss samples.
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We still do not know which part is causal or non-causal.
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When the most predictive pixels are masked, the loss increases rapidly. Therefore, the optimal

masking portion is just before this point!

Decompose and Compose

DaC

Choose one of these two assumptions: The
mask, or its inverse capture the core parts more.

The correct choice is determined by the worst validation

group accuracy.

Select low-loss images.

Mask and Combine: Merge the core part of one

image with the spurious part of another.

Retrain Prediction Layer with the augmented

data.

Justification

By combining low-loss (majority) samples, we

create samples representing minority groups.

The augmented data is more group-balanced.

retraining the last layer on the balanced

augmented data makes the model more robust to

spurious correlation.

Results

Group Info Waterbirds CelebA Metashift Dominoes

Method train/val Worst Average Worst Average Worst Average Worst Average

DFR[3] 7/33 92.3±0.2 93.3±0.5 88.3±1.1 91.3±0.3 72.8±0.6 77.5±0.6 90±0.4 92.3±0.2
Group DRO[5] 3/3 91.4±1.1 93.5±0.3 88.9±2.3 92.9±0.2 66.0±3.8 73.6±2.1 - -

LISA[6] 3/3 89.2±0.6 91.8±0.3 89.3±1.1 92.4±0.4 59.8±2.3 70.0±0.7 - -

MaskTune[1] 7/7 86.4±1.9 93.0±0.7 79.4 89.5 66.3±6.3 73.1±2.2 65.8±4.7 85.6±0.7
CnC[7] 7/3 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5 - - - -

JTT[4] 7/3 86.7 93.3 81.1 88.0 64.6±2.3 74.4±0.6 - -

Base (ERM) 7/7 70.8±0.5 91.6±0.1 41.7 96.0 61.3±3.4 73.9±1.5 72.8±1.6 88.5±0.3
DaC-C 7/3 92.6±0.2 94.9±0.2 76.11±0 91.35±0.2 76.0±0.8 80.0±1.4 89.0±0.7 92.2±0.2
DaC 7/3 92.3±0.4 95.3±0.4 81.9±0.7 91.4±1.1 78.3±1.6 79.3±0.1 89.2±0.1 92.2±0.3

Algorithm

Algorithm: Decompose-and-Compose (DaC)
Input: Model fθ(.) = w ◦ gϕ(.); Dataset Dtr; Loss

function l(., .); Hyperparameters α, q, causalflag

1 for epoch=1, 2, . . .K do
2 for batch B in Dtr do
3 b← mean(B)
4 B′ ← q portion of samples in B

with the lowest loss
5 M← {}
6 for each image (x, y) ∈ B′ do
7 Pick (x′, y′) ∈ B′ s.t. y ̸= y′

8 m← AdaptiveMasking(f, x, y, l)
9 m′ ← AdaptiveMasking(f, x′, y′, l)

10 if casualflag=False then
11 m← 1−m
12 m′ ← 1−m′

13 end
14 x̂comb = m⊙ x
15 +(1−m)⊙ (1−m′)x′+(1−m)⊙m′b
16 M←M∪ {(x̂comb, y)}
17 end
18 LCE ← 1

|B|
∑

(x,y)∈B l(fθ(x), y)

19 Lcomb ← 1
|M|

∑
(x,y)∈M l(fθ(x), y)

20 Ltotal ← LCE + αLcomb

21 w ← UpdateWeights(Ltotal)
22 end
23 end

5.2. Setup

The experiments are done on four datasets: Waterbirds [24],
CelebA [15], Metashift [12], and Dominoes [18]. The de-
tails for these datasets are in Appendix 8.

Similar to all the works mentioned in Sec. 5.1, the model
we use in our experiments is ResNet-50 pre-trained on Im-
ageNet. For ERM training, on all datasets except Domi-
noes, we used random crop and random horizontal flip as
data augmentation, similar to [3, 8]. Retraining the last
layer of the model did not require data augmentation. Also,
to reduce the strong disturbance of class imbalance, we
used class-balanced data to retrain the last layer on CelebA,
which is the same approach we took to reproduce the results
of [3]. Model selection and hyper-parameter fine-tuning are
done according to the worst group accuracy on the vali-
dation set. For all the datasets, the value for α and the
proportion q of the selected data (according to their loss)
for combining have been chosen from {1, 2, . . . 10}, and
{0.2, 0.4, 0.5, 0.6, 0.8, 1} respectively. For adaptive mask-
ing, we used [26] python implementation to determine the
optimal amount of masking.

In addition to the main method (DaC), we test another

version of our method, named DaC-C, which uses all the
correctly classified samples for making combined data, and
removes the hyperparameter q. Thus, it uses correct classi-
fication as a way for selecting low-loss samples.

For all datasets, we have trained the model in two set-
tings: one by assuming that the model generally attends to
the causal parts, and the other by the assumption that the
model trained by ERM attends more to the non-causal parts.
For all datasets except the Dominoes, the former has better
worst group accuracy on the validation set.

The details for training the base ERM model and training
the last layer of the model with DaC are in Appendix 8.

5.3. Results

The results of our experiments along with reported results
for DFR [8], Masktune [3], LISA [39], Group DRO [24],
and JTT [13] on four benchmarks are illustrated in Ta-
ble Tab. 1. Both the worst group accuracy and the aver-
age group accuracy as the most commonly used metrics to
evaluate robustness again spurious correlation have been
reported. Similar to [8], the Group Info column shows
whether the label of the group (majority/minority) to which
datapoints belong is available for training or validation data.
Among the methods in Tab. 1, only DFR requires group info
of validation data during the training phase (and not just for
model selection), which is shown by ✓✓.
The results of the methods annotated with ∗ are repro-
duced by our own experiments. As for the other meth-
ods, the results on the Waterbirds and CelebA datasets are
from their original paper. The results for Metashift are re-
ported by [35]. Three methods among the baselines, i.e.
DFR, Group DRO, and LISA need the group label during
the training phase as mentioned in Tab. 1. According to
these results, our method outperforms other methods that
don’t require group labels during training with a large mar-
gin in both mean and worst group accuracy metrics on Wa-
terbirds, Dominoes, and Metahift datasets. Moreover, al-
though the proposed method does not need the group la-
bel of the training data, it outperforms Group DRO and
LISA on Waterbirds and Metashift datasets and is on par
with DFR on these datasets. It is worth mentioning that the
CelebA dataset does not match the type of spurious correla-
tion for which our method has been designed as mentioned
in Sec. 2. More precisely, in addition to the face (includ-
ing gender features) that can be considered as a non-causal
part for classifying the hair colour, there is also a spurious
attribute for the causal part (i.e. hair) in this problem. There
is a spurious correlation between the volume of the hair and
the label, as will be discussed in Appendix 8.

Unlike most previous methods, which usually do not
generalize well to samples with diversity shift, our method
can perform well also for diversity shift if it is due to novel
compositon in the scene. For more analysis of DaC-C,
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