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Decompose and Compose

Spurious Correlation Algorithm

When training a deep model on a classification task, there is a chance that the model relies on Algorithm: Decompose-and-Compose (DaC)

spurious correlation between parts of images and the label”! Input: Model fy(.) = w o g4(.); Dataset Dy,-; Loss
function [(., .); Hyperparameters «, q, causalflag
1 for epoch=1,2,... K do
2 for batch B in D;, do
3 b < mean(B)
= 4 B’ < g portion of samples in B
Select by N cfv: —— Lee with the lowest loss
Loss Value "Mask an (il ERM | ¢ 5 M — {}
__  Combine ! | % e 6 for each image (z,y) € B’ do
4 B} 7 Pick (z',4y") € B' s.t. y # o/
' 8 m <— AdaptiveMasking(f, x,y,[)
9 m' < AdaptiveMasking(f, x’, vy, 1)
10 if casualflag=False then
When such correlation is abscent in the test data, the models accuracy drops. The Goal is to | B 11 m<1—m
train a classifier that is robust to spurious correlation. 5 12 m' <~ 1—m'
13 end
DLC ' 14 Teomb =M O T

The Focal Regions of Models

Masktune: Mitigating spurious correlations by forcing to explore.
In Advances in Neural Information Processing Systems, 2022.
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» Choose one of these two assumptions: The 15 +(1-m)o(1-m')z’+(1—m)Oom'b
mask, or its inverse capture the core parts more. | 16 M <~ MUA{(Zeomp,y)}
Based on the easiness of inferring the label from the spurious parts, the models may attend = The correct choice is determined by the worst validation : | 17 end
' ' roup accuracy. : l 1
more either to the spurious parts or the parts that are the real causes of the label. i ? tpl | v : T T : 18 Lok < 1 Y apen (fo(@),v)
= Select low-loss images. ! |
C =012 C = 0.12 . 5 i \ERM / \ERM / : 19 Lcomb < |/\1/[| Z(aj,y)e_/\/l l(f@(x),y)
= 0. — 0. - MaSk al’]q Combme.. Merge the core part of one i T v (D — o | 20 Livial < Log + aLeomp
image with the spurious part of another. : T )1 w < UpdateWeights(L;ora;)
= Retrain Prediction Layer with the augmented : 2 end
data. 23 end
0.5 Justification l m(a) N, om0
(a) . o : »  Combine :
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