Machine Learning Lab

MLL

Sharif University of Technology



What is MLL Lab?

The Machine Learning Lab (MLL), under the supervision of Dr. Soleymani, is a cutting-edge research center based in Sharif University of Technology, Tehran, Iran. MLL is dedicated to exploring a wide range of critical topics in the field of machine learning, from generalization to compositionality.

Research Area

  • Generalization
  • Compositional Learning
  • Reinforcement Learning
  • Generative Models
  • Vision-language Models

Contact Info

People

Director

Dr. Mahdieh Soleymani

Email: soleymani@sharif.edu

Google Scholar: link

GitHub: -

LinkedIn: -

Hosein Hasani

Email: hosein.hasani.ce@gmail.com

Google Scholar:

GitHub: link

LinkedIn: link

Mohammad Mahdi Samiei

Email: mohmahsamiei@gmail.com

Google Scholar: link

GitHub: link

LinkedIn: link

Negin Hashemi Dijujin

Email:

Google Scholar:

GitHub:

LinkedIn:

Ali Rahimiakbar

Email: alirahimyakbar@gmail.com

Google Scholar:

GitHub: link

LinkedIn: link

Ali Abbasi

Email:

Google Scholar:

GitHub:

LinkedIn:

Ali Bababeig

Email: mr.bababeig@gmail.com

Google Scholar:

GitHub:

LinkedIn:

Arash Marioriyad

Email: arashmarioriyad@gmail.com

Google Scholar:

GitHub: link

LinkedIn: link

Fatemeh Askari

Email:

Google Scholar:

GitHub:

LinkedIn:

Mohammad Mahdi Vahedi

Email: m.m.vahedi13800@gmail.com

Google Scholar:

GitHub: link

LinkedIn: link

Seyed Mohammad Hadi Hosseini

Email:

Google Scholar:

GitHub:

LinkedIn:

Soroush Vafaie Tabar

Email: svafaie@gmail.com

Google Scholar: link

GitHub: link

LinkedIn: link

Adeleh Bitarafan

Email:

Google Scholar:

GitHub:

LinkedIn:

Faezeh Faez

Email:

Google Scholar:

GitHub:

LinkedIn:

Mahsa Ghorbani

Email:

Google Scholar:

GitHub:

LinkedIn:

Seyedeh Fatemeh Seyed Salehi

Email:

Google Scholar:

GitHub:

LinkedIn:

Adeleh Bitarafan

Email:

Google Scholar:

GitHub:

LinkedIn:

Ali Abdollahi

Email:

Google Scholar:

GitHub:

LinkedIn:

Alireza Roshanzamir

Email:

Google Scholar:

GitHub:

LinkedIn:

Alireza Sahaf

Email:

Google Scholar:

GitHub:

LinkedIn:

AmirHossein Ameli Kalkhoran

Email:

Google Scholar:

GitHub:

LinkedIn:

AmirShayan Haghipour

Email:

Google Scholar:

GitHub:

LinkedIn:

Amirali Moinfar

Email:

Google Scholar:

GitHub:

LinkedIn:

Amirhossein Akbarnejad

Email:

Google Scholar:

GitHub:

LinkedIn:

Danial Alihosseini

Email:

Google Scholar:

GitHub:

LinkedIn:

Ehsan Montahaei

Email:

Google Scholar:

GitHub:

LinkedIn:

Fahimeh HosseiniNoohdani

Email:

Google Scholar: link

GitHub:

LinkedIn: link

Faridoun Mehri

Email: feraidoonmehri@gmail.com

Google Scholar: link

GitHub: link

LinkedIn: link

Fatemeh Farahnak

Email:

Google Scholar:

GitHub:

LinkedIn:

Hossein Khalili

Email:

Google Scholar:

GitHub:

LinkedIn:

Mahdi Ghaznavi

Email:

Google Scholar:

GitHub:

LinkedIn:

Majid Aminzadeh

Email:

Google Scholar:

GitHub:

LinkedIn:

Marzieh Gheisari

Email:

Google Scholar:

GitHub:

LinkedIn:

Melika Bahjati

Email:

Google Scholar:

GitHub:

LinkedIn:

Mohammad Amin Banayeeanzade

Email:

Google Scholar:

GitHub:

LinkedIn:

Mohammad Mozafari

Email: mozafari.mmd@gmail.com

Google Scholar: link

GitHub:

LinkedIn: link

Mohammadreza Fereydooni

Email:

Google Scholar:

GitHub:

LinkedIn:

Omid Abbasi

Email:

Google Scholar:

GitHub:

LinkedIn:

Parishad Behnam Ghader

Email:

Google Scholar:

GitHub:

LinkedIn:

Rasool Mirzaiezadeh

Email:

Google Scholar:

GitHub:

LinkedIn:

Sara Rastegar

Email:

Google Scholar:

GitHub:

LinkedIn:

Seyed Alireza Mirmohammad Sadeghi

Email:

Google Scholar:

GitHub:

LinkedIn:

Seyed Mahdi Roostaiyan

Email:

Google Scholar:

GitHub:

LinkedIn:

Seyed Mohammad Chavoshian

Email:

Google Scholar:

GitHub:

LinkedIn:

Seyed Mohsen Shojaee

Email:

Google Scholar:

GitHub:

LinkedIn:

Seyed Roozbeh Razavi Rohani

Email:

Google Scholar:

GitHub:

LinkedIn:

Sina Hajimiri

Email:

Google Scholar:

GitHub:

LinkedIn:

Zeinab Golgooni

Email:

Google Scholar:

GitHub:

LinkedIn:

Courses

Artificial intelligence

Fall 2025

Website: link

System II

Spring 2025

Website: link

Modern Information Retrieval
Spring 2024

Website: ...

Deep Learning

Spring 2024

Website: ...

Large Language Models

Fall 2023

Website: link

Machine Learning

2022

Website: –

Projects

Compositional Generation

In recent years, text-to-image (T2I) diffusion models such as Stable Diffusion and DALL-E have shown promising performance in generating realistic, creative, diverse, and high-quality images from textual descriptions. These models leverage the iterative denoising process and text embeddings through the cross-attention mechanism to generate images used in many applications across various domains. However, despite their impressive capabilities, these models often struggle to faithfully capture all the entities, attributes, and relationships described in the input prompt, leading to various compositional misalignments such as entity missing, improper attribute binding, wrong spatial relationships, and counting problems. We aim to add compositional generation capability into T2I models to overcome the mentioned compositional generation failure modes.

Spurious Correlation

Description

Open Positions

Publications

For a complete list of publications, please visit Dr. Mahdieh Soleymani's Google Scholar Profile

Send a message